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to be regular are given, which provide an orthogonal moving average representation.

Also criteria for such processes to have linear predictor filters are obtained:
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future. In the process, the notion of angle between isotropic complex stable
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1. Introduction.

The prediction theory of second order, and of Gaussian, stationary processes
has a vast literature developed over the last several decades and is now standard;
see for example Rozanov (1967). On the other hand, the prediction theory of
p-th order, 0<p<2, and in particular of stable processes has only recently been
the subject of intense investigation.

Here we concentrate on the prediction of stationary stable seauences. The
main difficulty compared with the Gaussian case arises from the need to work in
Banach, rather than Hilbert, spaces, where orthogonality, projections, and the
like have by far weaker properties and are much more unwielding in their
structure. Another source of difficulties is due to the richness of the class
of stationary stable processes, which are fully described in Hardin (1982).
Stationary stable processes include in particular moving averages of independent
stable r.v.'s; harmonizable processes, i.e. Fourier transforms of stable
processes with independent increments; sub-Gaussian processes; etc. Surprisingly,
all these three classes (and many more) are actually disjoint (see
Caimbanis and Soltani (1984)), while all stationary Gaussian processes are
narmonizable.

At this stage of its development the study of stable processes is frequently
nroceeding by a comprehensive study of special subclasses, such as moving averaaes,
harmonizable, etc. For instance parameter estimation of autorearessive
processes has been developed in Hannan and Kanter (1977), and prediction of
autoregressive moving averages (ARMA) has been considered in Cline and Brockwell
(1985). Here we concentrate on harmonizable stable processes. Even thouah
they are never ergodic (see LePage (1980) and Cambanis et al. (1984)),their

spectral density can be estimated consistently (Masry and Cambanis (1984)).
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“rediction theory for harmonizable processes with infinite second moments was
initiated by Urbanik (1970). The first results in the stable case were obtained
by Hosoya (1978) and (1982) for one step ahead prediction. The general
multi-step case was considered by Cambanis and Soltani (1984). The problem

of interpolation has been considered by Pourahmadi (1984) and also by Weron
(1985) in a more general set-up along with some ergodic properties.

Here we pursue the development of prediction theory of harmonizable stable
processes with a view to determine the extent to which the Gaussian (or second
order) theory extends to the non-Gaussian stable case. Earlier works mentioned
above revealed that the one step ahead predictors are given by the same recipe
as in the Gaussian case (with the same spectral density), but when predicting
two or more steps ahead the non-Gaussian stable predictors are generally different
from their Gaussian counterparts (Cambanis and Soltani (1984)). We show that
for stable processes there are three different kinds of predictors one may
consider,all of which coincide in the Gaussian case and hence are natural to be
considered and studied in this case. One of them is the metric predictor,
which minimizes the distance, and which has been considered by the authors
mentioned above. Two further predictors, which minimize appropriately defined
angles, and which we will call "angle" predictors, are introduced and
studied.

Specifically, in Section 3 we present spectral and time domain criteria
for reqularity (Theorem 1). The spectral criteria are log-integrability of the
spectral density (Hoséya (1982) and Cambanis and Soltani (1984))and a spectral
density factorization analogous to the Gaussian case. The time domain criteria
are a moving average representation in terms of an orthogonal, but not indepen-
dent, harmonizable stationary stable sequence, the innovations of the process:

and a corresponding orthogonal moving average representation of the one step
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ahead metric predictors. Unlike the Gaussian case, here truncation of the "
-

orthogonal moving average representation does not generally produce the two or «

more steps ahead metric predictors: in the non Gaussian stable case the moving
average coefficients have to be changed with each further truncation. However {j
the truncation of the moving average does in fact produce the r-step ahead 1
right angle predictors(see Section 4). A corresponding Wold decomposition i |
described in Theorem 2, and it is shown (Proposition 9) that the moving averac:s

and hence also the Wold decomposition obtained here is the best possible, and tnese

stable processes cannot have any of the stronger, and more versatile, wold

decompositions considered in Cambanis et al. (1985).

Section 4 deals with the important question of the existence of prediction
filters, i.e. of convergent series representations of predictors in terms of
the observed values of the process. The main result of the paper, Theorem 3,
provides spectral and time domain criteria for the r.v.'s of the process to
form a Schauder basis for its Tinear space. It is remarkable that, in spite of
the considerably different geometry of the non-Gaussian stable case, the positivity

of angle between past and future, and the positivity of distance between past and

future, turn out to characterize again the Schauder basis property. The spectral -
criteria are Tikewise analogous to those in the Gaussian case. tnder any one of ;j
these criteria all predictors can be realized by filters acting on the observed 1

part of the process, and indeed all estimation problems have solutions which
can be so realized.
An important related question is to find conditions, stronaer than regularity

and weaker then those in Theorem 3, which are sufficient for predictor filters to

P W N LU Py

exist. For the second order processes this question has been the subject c¢f study
by several authors: Akutowicz (1957), Masani (1960), Miamee und Salehi (1933). - A

Pourahmadi (1984),(1985), and Bloomfield (1984). Some such conditions are aiven in Ry
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Proposition 13, which is inspired by the conditions in Bloomfield (1984). Also
the relationship between the existence of a filter for the orthoaonal innovations
= and for the predictors is discussed.
- The analysis requires a systematic development of various properties of
r.v.'s in the linear space of a harmonizable process. These properties are
common to all isotropic linear spaces of complex symmetric x-stable (SaS) r.v.'s (i.e.
with radially symmetric distributions) and are presented in Section 2. It
turns out that complex symmetric stable linear systems that are isotropic share
simil~ oroperties with real symmetric stable Tinear systems, while the same
is not true for general (not necessarily isotropic) complex symmetric stable
linear systems (see Cambanis (1983)). Section 2 thus deals with isotropic
complex stable systems, and characterizes the linearity of conditional expecta-
tion (Proposition 6), introduces the concepts of angle and cf angle projection
and develops their properties (Propositions 4,5 and 7) and shows that positive

angle between subspaces is equivalent to positive distance (Proposition 3).




2. Harmonizable and other isotropic stable systems: Distance and angle.

Harmonizable processes

A harmonizable complex S«S process X = {Xn, n=0,+1,...; with spectral measure
a finite measure :: on (-v,7] is defined through its finite dimensional charac-

teristic functions

J e
E exp{i Re } T

n=k

T )
= N )1
ann} exp { !-r:nékzne du(8)y.

and thus is strictly stationary; or, equivalently, it is defined through its

spectral representation

where 7 is a complex, independently scattered, isotropic SuS measure on the

Borel subsets of (-7,7] with

-7

»7T m
E exp {i Re L fdz: = exp {-( ifiadp}
) J

=1

for all £ - L'(:) (see Hosoya (1982), Cambanis (1983)). The correspondance f - ; fdz

is an isomorphism between L¥(;.) and the closure in probability MX of the linear

space of the process X = {Xn, -+n~ i, which sends e'1n° to Xn. Thus every

rov. Y in M is of the form £ fdZ for some f in L*(.), and has an isotropic,

i.e. radialiy symmetric, distribution. The latter is evident from the ch.f.

of /fdZ, whence replacing f by (r-is)f we have

r 1 J2f . '#
E exp “i(r Re fdZ + s ImifdZ): = exp f-(r2+sz)‘/2f?f it -
) J i

Some further properties of the r.v.'s in MX which will be needed in subsequent
sections, are generally valid for linear spaces of complex S.S r.v.'s with

radially symmetric distributions, and we therefore develop them now in this 5:
.‘-J




Isotropic complex stable systems.

A complex r.v. X = X] + 1X2 is called isotropic S:S if X, and X, are

1 2
jointly SaS with radially symmetric distribution, i.e. E exp (i(r]X]+r2x2). =
= exp {-C(rf + rg)‘/z}, or in complex notation with r = r + 1r2,

E exp i Re rX: = exp ‘-c.r,

A complex process X = {X,, t<T} is called isotropic S:S if every finite complex

t’
linear combination jz X is a complex isotropic SaS r.v. Then there exists a

nt
n

measure space (I,:,.) and complex functions ft - L'(..), t.T, such that

N

Xp oo=mexp i-iri iy g £
n t n=1 " tn .

E exp {i Re r

W12

3!

i

where f . denotes FIFl N (Hardin (1982)). Equivalently, if Z is a complex,

L™ (u)
independently scattered, isotropic S+S measure on (I,7,u), i.e. for all

disjoint sets 11,...,In ¢ L of finite p-measure, Z(I]),...,Z(In) are indepen-

dent with E exp Vi Re FZ(Ik)} exp {—!r[“p(lk)}, so that for all f - L'(:.),

exp {-|r* [[fII,

Eexp ‘i Rer fde}

then the stochastic process 1f1ft(s)d2(s), t . T is stochastically equivalent

to X. we then say that {Xt, t ¢ T} is represented by 1ft, t - Ty, If MX is

tne closure in probability of the linear span of {X,, t ¢ 7', then the corre-

t’
spondance Xt - ft extends to an isomorphism between MX and the subspace

sb«ft, t . T of L'(.). M

is then a complex isotropic SaS space and every Y
infTX is represented by some f in L*(.). (For general, not necessarily
isotropic, complex SiS processes see Hosoya (1978) and Cambanis (1983)).

The following moment properties will be needed in the sequel. They

extend to the complex isotropic case properties known from the real case:

A




the real analog of (i) is immediate and of (ii) was established in Cambanis

et ai.(1985).

Proposition 1. (i) Assume 0= and let Y. m¥ be represented by f . L*(.).

/2,
R (h},uz),

Then the pair (Re Y,Im Y) has the same distribution as the pair vZ2''f '
where R is a positive /2 stable r.v. with £ exp(-uR) = exp (-ux/i). u > 0,

and is independent of the iid standard normal r.v.'s N] and N2. Moreover, for

all O:p<y,
P - . y 1/p
v Py 1/p _ .p2" T(p/2) r(-p/u), et b e
(EY ) =1 l.—i"(.-p?d) ! !lfill Cp’(..,_ ' f.. L

(i1) Assume 172 and let Y], Y2 . MX be represented by f1,f2 LG,

Then fnr every l:ip-i,

By ySP1 e ey

~le .32
Egyg}p f’fzfid;
where for >0 and complex z # 0, z<“> = ;zlf“] 7.

Proof. (i) Since Y « m we have Y = .fdZ for some f . L'( ).

Putting r = ry irz we obtain

_ . : . — ‘ 2, 2\ /2 i
. [ L= 1 ! i +
E exp 1(r]Y]+r2Y2)J E expii Re r S fdZ; = exp ! \r1+r2) IRER RS

The rest to’lows from (cf. Theorem 7.2 in Masry and Cambanis (1984))

- , - . 51/2 , oy L C o 2 2, 2y 2,2y /2 .
= -~ ” + f L _i[ = C -
exp-1.2 'R (r]N]+r2 2) E exp: lf,'lR(r]+r2) exp (r]+r2) f

[
T

(i11) The calculation is similar to that on page 357 of Kothe (1969).

-~

“or complex numbers z # and w, and real . we have d z +ou P =z P° Re(zw)

and thus

zw Pz ity p iz [P Re(zw) - 1 Re(ziw)

...................
........................
..........
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8
% Using part (i) we obtain
<p-1> _d . v P i Ely . iy P
. PEY,Y, g EiY *e¥ ! T ENY, Yy 120
= p d,_--“ : ! p -1 { R 'gp';
S R AP AR RE MRS P AR PR
_ p [ izp-’ :‘ ;‘L'Z; = o = . 1
Cp,w p“fz;lj ,‘fZ' Re(fzf]) i Re(f21f]) ¢..
=p Cp Vif P [f £ "l-]\’dv
Dyt 2y J 12
Coupled with E'Y, P cg 1 !‘legp, this establishes (ii).

In the Gaussian case : = 2 the moment expression in (i) holds for all

n

o 0 and in (i1) for p = 2 as well.

Now putting ~ ¥ = = ' f: _ we have that {iY;‘lA" defines a norm when

]iﬂjz and a quasi-norm when 0< 1 on MX, which metrizes convergence in
probability (Cambanis (1983)) and which, by (i) of Proposition 1, is equivalent
to convergence in Lp(l), 0p ..

Wwhen 1-.<2 and Y], Vo oy are represented by f., f2 . L), the covaria-

tion of Y] with Y2 is defined by




AN e A A e evw -
F . Padine T, ey

e T

Tl .o

Sy Holder's inequality we have ;[Y],Yzll‘ - fr I

1

with equality if and only if Y] = zY2 for some cowplex z. ne covariation of a

harmonizable process is

tne familiar form of the covariance of a stationary nrccess. In the Gaussian

case « = 2 the covariation reduces to one-half the covariance.

We say that the r.v.'s Y] and Y2 in MX are mutually orthogonal, or plain
orthogonal, if [Yl’YZJI = 0 and [YZ’Y1], = 0. When [Y],Y2]I = 0 we say that
Y2 is orthogonal to Y], Y2 L Y], which is thus a nonsymmetric notion and

coincides, in view of Proposition 1 (ii), with Y2 being James-orthogonal to

Y. as elements in any Lp( ), 1-p<. (see Cambanis et al. (1985)) for a discussion

1
in the real case). While independence and orthogonality are equivalent in the
Gaussian cese =2, when 1v.-2 independence inplies mutual orthogonality but

tre converse 1s not generally true. This is because when G : 2, Y] and Y2 are

indepencdent if and orly if their representing functions f] and f2 have disjoint

supports, i.e. f '€2 = 0 a.e. [..] {Camnanis (1983)), while mutual orthoconality

]
erely reans that £ F 7 a2 0 = SFFTT 174
erely nean P ;. AR .
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! We now show that just as in the real case regressions on one r.v. are

lTinear.
I
] Proposition 2. If 1<.<2 and Y],Y2 , Mx,then
‘ [Y,.¥,]
t E(Y,(¥,) = =& Ly
[v,.¥,]

Proof. For any two jointly SuS complex r.v.'s Y],Yz, it is shown in Cambanis
(1983) that E(YZ!Y]) = cY, iff [Y2 - Yy, Re(iY])]( = 0 for all complex z in

which case ¢ = [YZ’Y ]a/[Y],Y]]u, i.e. iff

[Y],Y]]L[Yz, Re(fY])]u = [Y2,Y]]L [Y], Re(EY])] .

U

Now let Y], Y2

sufficient condition becomes

- M be represented by f],fz - L*(:). Then the necessary and

f ¢ ) .
frg 1t .[ 5 <a~l> <iy- i <=1
j‘f], du }fZ(Re pa f]) dy }fzf] di jf](Re Z f]) a
Now from
) — - [ _ .
I3 = R Pty
E exp -1 Re (Z]Y] + 22Y2)} exp! }lz]f] + Z,f,"
(: ‘ B -i arg f1,q
= exp1-J12]‘f]1 + 7,f.e ! dit
-1 arg f]
it follows that (Yl‘YZ) is also represented by (‘f]f, fze ). Thus

without loss of generality we may take f, to be real, whence Re (2 f]) = (Re i)f]
and the necessary and sufficient condition for Tinear rearession is clearly
satisfied.

A natural way of defining an angle between r.v.'s Y] and Y2 in mX when

142 is as follows. We define a complex valued cp§jgp‘pfuﬁhg_gpgjg_qf4Y]#O

.............................................
.............
AAAAA

.............
..................
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with Y,#0 by

. Y Y [Y.,v,]
& 1 2 - 1’2
COSJ(Y] ,Yz) [ i!Y ‘! s ,Y t' ](l - [ L _WT—T.]
1w iTall, LIS Y, i
UL L 2"
By Proposition 1(ii), it can also be written as
(lp-]> <SD- ] >
COSCt(Y],YZ) = ] S _p_j_] = E(___Y l_.‘_ -‘y_-<p_]> ,‘__) - p 1° 2
for all 1-p<.. Thus the cosine defined through covariation agrees with that

defined through Lp(") for all l<p<:. Henceforth we will simply write cos(Y],Yz),

instead of cns((V],Vz) or cns (Vl’YZ)' When either Y,=N or Y_=0, we define

p 1 2
cos(Y],Y2)=0. Clearly }cos(Y],Yz)i < 1 with equality only when Y] = zY2 for

some complex z. The cosine of the angle cf a subspace N] with another subspace

N2 of MX is defined by

- = a - S
.(N],Nz) sup {!cos (Y],Yz)l. YyeNgs 97Ny

and thus A(N],N < 1. Extending an idea of Helson and Sz&go (1960), we say that

5)

N, oand i, are at positive angle if o(N,,N,) < 1 or equivalently (as we will see

in the next proposition) P(N,Ny) < 1.
The distance between two §ubépaces N] and N2 of MX is denoted by

d‘(N1,N = inf{;iY]—YzﬁlgA]; Yy Npa Y, s NZ’ '1Y11'=]=|:Y2‘}:

5)

; N VR fe'y _y P Al N - :
or by dp("]’NZI inf l(E,Y] YZ‘ Yy P Y] : N], Y2 NZ , O<psi. In view of

Proposition 1.(i) we have dp(N]’NZ) = Const(p,u)dy(N],Nz). We say that N] and li
", are at positive distance and write d(N],N?) > 0 if dw(N],Np) ~ 0, or equivelently i
if dp<N]’N2) » 0 for some U-p<.. We now show that when 1v <2 two subspaces of MX ‘?
are at positive angle if and only if they are at positive distance. This is a i

crucial property needed for the development in Section 4.
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Proposition 3. Let 1-1<2 and N],N2 be two subspaces of MX. The following are

equivalent.

(i) d(N],N > 0.

5)

(111) a(Ny,Ny) < 1.

Proof. The proof of (i) >(ii) (in the real case) was shown to us by Jan

k Rosinski. Since (i) is symmetric in N],Nz, it suffices to show (i)< >(ii).

s Now to show (ii) >(i), it suffices to show that d(N],NZ) = 0 implies
‘(N1’N2) = 1. Assume d(N],NZ) = 0. Then there exist YngN], ZneNz, such that
! = = | 't il - N 2 ' : .
Y, e |an_i and |]Y, anlu 0. By Holder's inequality

, Loy - o1 _ .
¥,-2,,2.1 0 < Y -Lhiy, 1z, 11,7, It follows that [Y -7 , Z 1 ~ 0 and

][t
r > i > : =
thus LYn, Zn]t 1, i.e. cos(Yn,Zn) 1 and p(N],NZ) 1.

We now show (i) >(ii). Assume (i) and put ¢ = d(N],Nz) > 0. Let M],M2

be the subspaces of L¥() which represent N]’NZ' Then (i) implies that for

3 b | = I | - S, .
all f],M], fz‘M2 with ;! f l;u ,llel‘, we have ‘1f1 f2[1' > e > 0. By
the uniform convexity of L™(y:) (cf. Kothe (1969),% 26.7]) there is - = () ~ 0
such that I§f1+f2}[ < 2(1-8). Thus for every 0<.-1 we have

1 P | ; _ 1y, . .
“(‘.f2+f]nl‘-lf2‘l l) - T(‘l:(]‘\)f2+\(f1+f2)]1L'::fz")

- l--’(1 DR PR RESERE S5 2 UL SO

) - i'gii \i] 20, o

R RTINS PR SREL RS PERE RE B O

On the other hand, as in the proof of Proposition 1.(ii), we have

d { g1
ar Re 'f.f d

] N fd =
2 F0 o AW b
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It follows that

Re f £ gla-1>

1F5 di < 1-24.

Since this is true for every f] ¢ M] with ;{ﬁ

f] exp.-1 arg (jf]f;"']>du)} we obtain

=1, replacing f] bv

.
(
‘ 1\,1

e < 1e2s,

SRN- i
. ] | 1=y I!
It follows that for all Yy ¢ Ny, Y, ¢ N, with |y |!u 1 I,Yz,lQ we have
[Y]’Yzj.i < 1-2¢ and hence p(N],NZ) < 1-24 < 1,

X and an element YcMX\N. In the Gaussian case

fow fix a subspace N of M
1=2, the projection P(Y|{N) of Y onto N is the element of N which is characterized
by the orthogonality of Y-P(Y,N) and N, which in this case (:=2) is equivalent

to either of the following:

[n, Y-P(YIN)] = 0, for all neN,

o

[n,Y]a = [n,P(Y}N)]q, for all neN,
[Y,n]i = [P(Y\N),n]u, for all neN,
[‘.’-P(YEN),n]l =0, for all neNN.

When 1-.<2 however, since the covariation is neither symmetric nor linear

in its second argument, only the last two conditions are generally equivalent,
and in general the first three conditions are distinct. Thus when 1-.-2

there are three possible ways of defining projection, via the first three
conditions above. The first condition leads to the metric projection m(Y 'N),
which is the unique element in N minimizing the distance to Y from N, in any of

the applicable metrics discussed above, for instance

CYen(YIR) [ = inf Yenl]
' n(’N '

UL
PO S SN
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a

and is uniquely determined by )

[n, Y—m(Y}N)]w = 0 for all neN, ]

]

{cf. Singer (1970a)). Using the second and third conditions we define the left, resp. -

right, angle projection of Y onto N as an element at(YfN), resp. ar(YEN), of N i
which satisfies

[n,Y]% = [n, a((Y}N)]u for all ncN, :

resp. i

[Y,n]l = [ar(YﬁN),n]% for all neN. ]

1

The following properties further justify the terminology used. '

L . , ) , \ BTy
Proposition 4. If a((Y'N), resp. ar(Y‘N), exists then l!ag(Y,N)l\d <Y
resp. jfar(Y'N){!w g }IY{IW, and if moreover a((YgN) # 0, resp. ar(Y}N) # 0,
then the left, resp. right, angle projection direction minimizes the left,

resp. right, angle, i.e.

. aF(Y{N) :;a((Y!N)IIT_]
sup cos{n,Y)! = jcos( —emy YY) = '_]” ,
n N fa (Y N)|! Y
, . [ ( v 1 [ y
n =1
4
resp. ]
ar(Y!N) E)ar(Y¢N)ff )
sup  ‘cos(Y,n). = ‘cos(¥, —-immoylE et
ot a (YIN)}! Ly h
[ r 'y ' (
o =l .
' ]
Proof. If n N, ;:n’fl = 1, and a((Y;N) # 0 we have
[H.Y]' [h.d((YZN)]l a (YIN)! f-] ap(Y|N) :
COS(n,Y) = ---,_‘_ll_l‘] :_,q___,_A_dl:_]V_ o .V-,,-‘;_‘:]‘ . (,Os(n, . _ 7>A77)
e v Y Ha (YN
s .
and tne result follows from HOolder's inequality. Likewise for ar(Y,N). ;
We now show that Teft angle projections always exist uniquely and we !

A Er At ot A Sh SRSy s
.
A
.
o
.
Pttt ' ‘o ala
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characterize their direction.

Proposition 5. Let N be a subspace of MX and Y ¢ MX\N. The left angle projec-

tion ai(YlN) exists and is unique, and if it is not zero, the left angle

-1

projection direction 6€(Y:N) = a,(Y{N) ila (YIN)I{"" is characterized as the

£ H
element of N which satisfies

[ n_[n,SC(YiN)]&S((YEN) .Y ]a = 0 for all ncN.

Proof. If for all n:N, [n,Y]q = 0 then it follows that aK(Y{N) = 0 uniquely.
ve therefore assume that [n,Y]” does not vanish for all n.N. We will show
that there is a unique left angle projection direction *C( 'N) in N with unit
norm (written for simplicity &K):

icos (n,Y)l = ‘cos(-,,Y)!,

u ¢

sup
n- N
SRS

(where we may in fact delete the absolute value on the right hand side) and

that it is characterized as stated. It will then follow imnediately from the

characterization of e that
L
a (Y %) = [,¥] T
satisfies for all n.N, [n,ag(YIN)]1=[~(,Y]i[n,&(] = [n,Y], hence it is a left
angle projection of Y onto N, and its uniqueness follows from Proposition 4
and the uniqueness of ‘(.
Let f . L'(,.) and the subspace M of L ‘(i) represent Y and N, and let g
represent n. N with [ 'ni' =1. We have cos(n,Y) = Igfc”—]qu-k!f1f *, and
thus to show the existence and uniqueness of o it is equivalent to show that

there is a unique gp + Mwith flg(‘ﬁlrl such that

.....................................................
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Ca=1>

S = sup | f}gf du: g M, ligll =1V = g f T gy,

There exists a sequence g M, !}gn[:a=], such that }fgnf“"]bd;f ~S. Since

the unit sphere in L“(u) is weakly compact, there is a subsequence {gn ’

< e < =] k

converging weakly to some go : fgn f ol ]'dy > fgof\‘ 1 d.., so that
k

S = lfgof<“_]>db_. Also, since weak limits from M belong to M, as M is a

subspace of the reflexive Banach space L‘(..), we have qO(M. As it is clear
that :‘goi,,=1, existence of 9e is established. To show its uniqueness,

assume there are two distinct directions spxg]} and sp{q?} with g],gzxM and

: Cr <=1 TS b
' = = il - | r N = = [ VAE.
¢, 1 90l such that ,,g]f duf =S l,ng di.!. Then
h. = g;exp f-i arg(fgif<“']>dﬁ)1, i=1,2, belong to M, have unit norms and
satisfy :hif""]>dp = S, so that
] <(x,—]> -
Since sp {gy: # sp 192}, we have h]fh2 and putting ’[h]-hzljt = ¢ > 0, by the

strong convexity of L“(;.), there is & = &(+) = 0 such that j§h1+h2?}q < 2(1-5).

It follows that h = (h]+h2)§Th] + h211'] belongs to M, has unit norm, and

satisfies

<y-1> S

el 1 f N N

'hf dii = v g T
J wljt-h.l‘,’hzl't J

h]+h2

contradicting the definition of the supremum S. Hence the uniqueness of 9,

iz established.

The unique maximizing element g must satisfy (d/da)F(q( + uq)/L 0 for ¢11

.M, where
foLT r
Fla) = of “Vgu+ o( 'qi'd, - 1),
) '

(see Luenberger (1969), pp. 188-189) i.e. fgf“'-]>dw+ caSqa SRR du = 0,

"
G M. Putting 9=g, , we find \,=-fg(f'"—]>dd, and thus the condition becomes
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SN P [ <
qf d. -
9 199

5% S BRI B N
dp-Jggf d, =0 for all gM.

Expressing it in terms of the space MX, this condition becomes

[n,Yjﬂ-[n,‘djq[xt,Y]d=O for all ncN. Hence the proof is complete.

In studying right angle projections we will use the following characteri-
zation of linearity of regression, which is a complex version of a result in

Cambanis et al.(1985).

Proposition 6. Let N be a subspace of M and Y-M*N. Then E(Y'N).N if and only

if there exists Y . N such that [Y- Y,Z]“:O for all Z-N and then Y = E(Y'N).

Proof. Let Y = Y]+1Y2, L= Z]+iZ2 be represented by f,g respectively and put

:(r],rz) =E exp{i Re(rY + Z)1=E expi(r Y +r ¥, + Z1)}

117 22
= exp {-J“iFf"'gild'uf.
Then
e efellly, -1(2?» i%ﬁ—)
N 72 r =05y,

=i, exp(-rlgl ‘d.){ g "%Re(qf)d.+i g  T2Re(~igf)du.

i ,_]>

icexp(-sig) 'd.). fa d.

icexp (112,01 [Y,2]

ccf. proof of (ii) of Proposition 1). It follows that

ol Re(Z)(

£l RO ey v Y-¥)

i oexp(-'12! ") [Y-Y,2] .

1 B
W3 o

.
.-
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Now E(Y!N). N iff for some YN we have E{YIN) = Y or equivalently LHS = 0

for all 2N, i.e. RHS = 0 for all ZeN.

We now show that right angle projection does not always exist, that it
is unique whenever it exists , and that it coincides with conditional expec-
tation whenever the latter is linear. Recall that in the Gaussian case =2,
conditional expectations are always linedar and coincide with the metric and

both angle projections.

Proposition 7. Let N be a subspace of MX and YrMXYN, and 1< <2,

(i) The right angle projection of Y onto N may not exist in general.
(ii) If the right angle projection exists, then it is unique.
(iii) If the conditional expectation E(Y|N) is linear, then the right angle
projection exists and they are equal: ar(Y{N) = E(Y!N).
Proof. (i) The right angle projection fails to exist even in the real case.
Here is an example. Take I = [0,1], » = Lebesque, f] = 1[0,2/3], f2 = 1[]/3,]]’
= ooy
be of the form a, = aY1 + by

Y = ffdZ, Yi = ffidZ, i=1,2, N = sp'Y If a, exists it must

],Yz-.

5 = f(af] + bfz)dZ for some a,b; and it must

satisfy [Y,n]s = [ar,n] for all n. N, i.e. for all n = xY] + yY2 = f(xf] + yfz)dZ.
Thus a.b must satisfy
f]( Fro+ b)) (xfy + yf) T = {](xf fyf) T for all x
ah 2/ WXty T YT, AP ¢ -

'0 '0

Putting x=0 and y=0 gives a=b=2/3, and then putting x=y gives the contradiction

Z2'=4. A genuinely complex isotropic example can be provided by taking

= (--,-], . = Lebesgue, Y, = et R4z, k=0,1.2, N = sp-¥yY

-
i

1

= YO+Y]+Y2, and reaching a contradiction likewise (using a property shown

—<
¢

in Example 4.5 in Cambanis et al, (1985)}).
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(i1) Suppose there are a],az.N such that for all n.N: [Y,n]( = [a],n]

and {Y,n] = [a,,n] Then [a,,n] = [a,,n] and [a,-a,,n] =0 for all n N,
1 2 [§3 ] t 2 t ] 2 t
: =3. - 3 Tl - RC - =

Taking n a1-3, gives | ja, aZ\‘ 0 and thus a,7a,.

(iii) If (Y N)-N, by Proposition 6 we have for all n.N, [Y-E(YfN),n]x=O,
i.e. LY,n] =[E(Y,N),n]t, and thus by (ii), ar(YiN) = E(Y N).

The following examples show that in the non-Gaussian stable case 1- 2,
the metric projection, the left angle projection, and the right angle projection

may all be distinct, and even have distinct directions.

txample 1: Where the metric, left angie, and right angle projections have the

same direction but are distinct. Take I = [0,1], . = Lebesgue, 1<u°2,
Yy = 7 = = <plW:. . .
) _](0,2/q)d2, W ,](O’])dz, N = spiW It is easily seen that
1
a (V) = E(vw) = 3, a,(vW) = (DT W mrw) =
r | 3 ] l/ { 3 3 : 7-]—.” L)
1+ 2x-1

and nence they are all distinct.

M

xample 2. Where thc metric, left and right projections have distinct directions.

Take I = [0,1], 1. = Lebesgue, 1< 2, Y] = 1, )dZ, Y

0,1/2 2 = 2,9
NoTosp 'Y],Yz? and Y = II(O,2/3)dZ. An easy calculation shows that

- rly - 1
ar(Y Y]’Yz) - E(Y'Y],YZ) = Y] + 3—Y2,
s
a (Y Y, ¥) = v+ (hyrTy
1°°2 1 3 2’
- 1
m(Y.Y],YZ) =Yyt T Yo
\i‘]
142

and that they have distinct directions (i.e. coefficients of Y2).

An interesting infinite dimensional case where all projections have the

.......................................
......
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same direction arises when X = {Xt, t-T: is a so-called (-sub-Gaussian process,
i.e. Xt = A]/ZGt, t- T, where G = ‘Gt’ t- Tt 1s a zero-mean (aussian process
independent of the positive wu/2-stable r.v. A,with E exp (-uA) = exp (-u‘/z)

s

u-G.

Proposition 8. Let X be w-sub-Gaussian with 1< «2, N a subspace of W and
v.u* N, Then

m(Y N) = ar(YiN) = E(Y'N) =cC a((Y‘N)

for some constant ¢ (depending on Y and N).

Proof. We have MX = A]/2~MG and thus N = A]/2~L for some subspace L of MG,
and Y = A]/Zw for some W-L. Also, from Corollary 2.3 in Cambanis and Miller
(1981),
E(W, W,)
172 v 10,,2\1/2
[Y ’YJ_: - ’f}YJ.‘z(—EN) .
12727 2:/2[Ewg]1-u/2 ¥ 2
- . | _AV/2. _a1/2
The expression of the norm shows that m(Y N) = A" “m{W!L) = A"“E(W. L). The
expression for the covariation then shows that for all n = A]/ZK.N, T
. : ETE(WIL)Y] . ETWe] ~
Ln(Y N),n] = ,,.}‘-"4,-;7_, = e b = (Y, n]
1 21/2[E£;2]] 1/2 ZL/Z[E(Z]]-N/Z '

o that a (Y N) = m(Y;N). As for sub-Gaussian processes conditional expectations
are linear {(cf. Hardin (1982a)), we have by Proposition 7(iii), ar(Y NY o= E(Y N,
~& also see that

(n,m(Y'N)] E[CE(W'L)]

- ZAYZtE:E}u:L)52j11172

COEWe 1-42 F( W)
1-

e 2

frori which it follows that a{(Y;N) = c-]m(Y,N).
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3. Regularity and orthogonal moving average representation.

In this section we obtain criteria for regularity of harmonizable $.S

POy

processes X = txn}, and a Wold decomposition. We first present and discuss

\
Py

the results, and then prove them. ;,
A process is called regular when its remote past is empty and singular

wnen its remote past contains all the (linear) information. Specifically, let

us denote by Mﬁ, resp. MX, the closure in probability, or in '~ |

H

norm or in Lp(“) norm (cf. Proposition 1), of the linear span of {Xk, koni, h
resp. Xk, k-+-:. The remote past of X is the subspace M%Y = nMﬁ. X is ]
X

called regular if M%_ = 0* and singular if M§“'= M®. H" denotes the space of

Hardy functions in the unit disk. Spectral and time domain criteria for reqularity
are given in the following
Theorem 1. For a harmonizable SiS process X with 1-.<2 and spectral measure ..

the following are equivalent. .-

(1) X is regular.
(2) d.{(-) = f(~)d“ and flnlog ) doo> -,
f(-) d- and (-} = ‘+(-). " where ¢ - H™.

—~
w
-
a
r"\
-~
ut

{4) X has a moving average representation Xn:7;=0 akVn_k, where the process
X v

V= V- is Jointly stationary with X, satisfies M) = M/, and has mutually g
orthogonal r.v.'s, e

' 1

)T : i 1 ne i )
) The one step ahead linear predictor Xn+1,n of Xn+1 based on {Xk’ ken: is }
s _ o Voo v ) ie ini )
;iven by xn+1,n M akvn+1—k’ where the process V \n) is jointly .
stationary with X, satisfies Mﬁ = Mx, and has mutually orthogonal r.v.'s. i

These criteria extend to the case 1 .22 the well known criteria for
regularity in the Gaussian case =2. While the spectral domain criteria {(2)

and '3) are nearly identical to those in the Gaussian case, the time domain

. R I A S O S L T R D N U S PR
l .’ e e aa"ata~a" . o T e .. et e e Joen et e RN DR . . . D S UL R DA . .
e S O B B S W SASLEL I ST TSI S 0 S S SLOT D Shir S ir SO TP T I L G A, TP RPN A e e el
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criteria {4) and (5) exhibit significant differences with tneir Gaussian
counterparts. The series in (4) and (5) converge in * . norm, or eguiva-
tently in p-th order mean O p- ..

The spectral domain criterion (2) was established in Cambanis and
Soltani (1984) and has the feature of being independent of the index of
stability .. The spectral density factorization criterion (3) does depend

on ., does not reguire ; to be outer, even though this may be added to it

without Joss of generality, and leads to the following

1

Corollary 1. If Oif.L1, then f is factorable as f = !:! with : . H', if and
only if log f . L]
The time domain criterion (4) provides a "unigue" orthogonal moving

average representation in terms of a S:S process V. As shown in the proof of

Theorem 1, the S4S process V is in fact harmonizabie with Lebesgue spectral

measure, and up to a fixed multiple the weights -a - in the woving average are

k
the Fourier coefficients of the outer factor : of the spectral density f. The

necessity of the moving average representation (4) is a refinement in the discrete
time case of a continuous-time result in Cambanis and Soltani (1984) (Theorer 3.1).
in sharp contrast with the Gaussian case wheve the r.v.'s of V are independent,

in the non-Gaussian stable case the process V never has independent v.v.'s; this
is the discrete-time analog of a continugus-time result in Theoren 3.1 of Cambanis
and Soltani (1984). Thus the moving average obtained nere is tne best extension

to stationary harmonizable stable processe-. of the result for stationary

Gaussian processes. More specificall, we can prove the following

Proposition 9. (i) A harronizatile  ° irocess ©with 1.0 2 3s reqgular if and

a, v where a,.>0

only if it nas a moving average re;resentation X =
y as oving 49 v n k=0 “k'n-k 0

— v Mt i o g e o
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L. . . . L .
and V = :Vn» is jointly stationary with X, satisfies Mthn’ and has mutually .;l

orthogonal r.v.'s with norm one. .
g 4

(i1) The representation in (i) is unique.

(11i) No harmonizable non-Gaussian S.S process X with 0-.<2 is the moving
average of an independent S.S process V with MX = MV.

The time domain criterion (5) expresses the one step ahead linear precictor
as the one term truncation of the moving average. 1Its necessity is implicit
in Hosoya (1982) and Cambanis and Soltani (1984). 1In sharp contrast with the

Gaussian case, however, in the non-Gaussian stable case the m-term truncation of

the moving average does not generally produce the m-step ahead linear predictor

for m>2. The linear predictor Xn+m,n of Xn+m based on «Xk, k'n. is the best
. L X
metric approximation to Xn+m in Mn'
XL - X U= inf U, -y oy owb
~Cntm T Cntm,n oy C w0
or eguivalently, by Proposition 1,
EX - Pooinf e, v Povwt o
Y dm ‘n+m,n nm n e RO
and is uniquely determined by
(X, X - X 1 =0 for a1l xn,

k> "ntm n+m,n- ¢

cf. Singer (1970a). In particular, the w-step ahead linear predictor is civen

by the m-term truncated moving average: Xn+m,n T ke Yk ek 1f and only if

m-1

[Vj’kioakvn+m—kjl

=0 for all j = n,

!

since ?i = Mh; or equivalently if and only if

NN Iy ':‘A.. S

4 c,om=]
( e1('(z a
S k=0

—
—~—
-
1
-—
ad

4 =0 for all ¢ -,

P S T Y D . e - . oot e I A - P e S PP N
Py PO TP S Y Sy N R Ls_\_‘u_L;LL’L"‘L'A‘A-"L’L‘L“M




where the ak's are the Fourier coefficients of the outer factor : of the
spectral density f.

Putting together the {clearly unique) decomposition into independent
regular and singular components obtained in Cambanis and Soltani (1984),

Theorem 4.2 , along with Theorem 1 and Proposition 9 we have the following

Theorem 2. Wold decomposition. Let {X ! be a (non-sinqular) harmonizable S~S

process with 1<a<2. Then there is a unique 4-variate harmonizable SuS process

<X ,Y ,Z ,V 3} such that
n'n>n’'n

JYn} is regular, {Zn} is singular and independent of {Yn} and of an}, a0>0,

X v

and {V_: are orthogonal and satisfy M = Mf”'+ "n

Of course we also have that MTU = MZ is independent of MV = MY, and Zn is
the metric projection of Xn onto Mfm.

In the Gaussian case a=2 the innovations {Vn} are indepencent, and the
m-step ahead linear or regression predictors are obtained by m-term truncation
of the right hand side of the Wold decomposition. In the non-Gaussian stable
case the Wold decomposition described in Theorem 2 has substantially weaker
consequences and in particular provides only the one step ahead linear predictors.
For general SuaS processes Wold decompositions with stronger properties, called
"right", "left" and "independent" Wold decompositions, are defined and
studied in Cambanis et al. (1985), to which the reader is referred for definitions and

details. However harmonizable SaS processes can not have any of these stronger

Wold decompositions.

Proposition 10. A harmonizable SaS process does not have a right, left or
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independent Wold decomposition.

Proof of Theorem 1. The equivalence of (1) and (2) is shown in Cambanis and

Soltani (1984). We first show that (2) =>(3) ~(1).

Assume (2). Then ¢ can be defined as in Cambanis and Soltani (1934) (Eq.

(5.4) or Remark 5.1): Since loa f . L', the function

g 10
] (‘ e U4z

S log (), 2l 0,

is outer, and for a.e. @, 1imr?] ¢(re
Theorem 17.16).

Now assume (3). Consider the linear isometry U]: LYf) ~ MX defined by
Uy(f) = /__fdZ, which is onto (cf. Section 2). Also note that in view of (3),
U2.
necessarily onto). Then U = UZU{]: MX -~ L™ is a linear isometry (which is not

necessarily onto). Since U(Xn) = UZ[U{](Xn)] = Uz(e'1na) = '1n@¢(o), we have
for all n,
b)) = L - spe e, ke

. X =1p o —e-ik0 : RS SRR
Thus nMn < U [‘nLu-sp.e .,_k < nt], and in order to show (T). “nMn = {0, it
suffices to show ~nL“-§b {e’1k“, ken: = :0:. Let h . L“-§B?e—1k9, k<ni for

all n. Then

[ i 0
L h(0)e™ %o = 0 for all § - -n.

= ¢(e) and (") = f() cf. Rudin (1966) ,

M /1 . - . . . -
c LM(F) » L*(Leb) = L® defined by Uz(g) = go is a linear isometry (which is not
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Since h - LY ¢ L] and all its Fourier coefficients are zero, h = 0.
FQ We now show (1)< >(4). First assume (1). Then choose an outer factor

4 in (3), so that & # 0 a.e. It follows that the isometry U2 considered in

the previous paragraph is onto, and hence so is the isometry U: MX - LY

!I v, = U-l(e—1n9) are well defined and satisfy Mﬁ = Mx'

Thus
Since + ¢ H™*,

it has a Fourier series

) . 93
which converges in L, and thus

_ -1,.-1n0, e _
Ko 7 U e el = ] ey " Lotk nk
k=0 -
Also, in view of the isomorphism U, we have
N K N -in€ ¢
£ exp i1 Re } z V.1 = exp {—[ ) z e 1Mdad.
n=1 fonon=]
Thus Vo= ‘an is harmonizable SaS with Lebesgue spectral measure and thus

r.wtually orthogonal r.v.'s:

il L e
(v v, 1 = { e KN - 0 for all k # n.

This shows (4). The joint stationarity of X,V is evident from Xn=U-]
\',rn - U"](e“]n").
Conversely assume (4). Since Mx = M?, each vn belongs to MX and is thus
of the form
o o
Vo =, 9 (0)dZC), g L),

Now for all n,m we have

.......

(e ™ () and




[N AN A il gl SRR A e At S A S SN 55 A S st OSSR IL R s sout LS o Brel orA e o oA s e

T T .
( e—1neg<cx-1>dU - J e-1(n—m)69xa ]>dp.
J m 0

- -
Thus for each m the Fourier transforms of the finite measures g;&']“dn and

ime <q-=-1> . . . . .
g Mgt 1 du coincide, hence these measures are identical, i.e.

0
g;a']>(9) = eim6g8a']>(6) = (e'im"?g(O))Q""']> a.e. [x], and thus
9,(0) = e—imﬁgo(o) a.e. [.]
(since z = w iff z<6> = w<8>). From the orthogonality of the Vn's we have
0= [Vn,VO]a = Jfrgngau']>du = (fme'inglgo!qdu, n#0.

It follows from the Riesz theorem that the measure }go(ﬁ){&du(e) is absolutely

continuous with respect to Lebesgue measure: lgO(O)!adu(e) = ¢(8)d~, and then

the above equality reduces to /7 e']noc(O)do = 0 for all n # 0, which in turn

i

implies that c(6) = positive constant = ¢, say, a.e. [Leb]. Thus
lgO(O)ladp(H) = ¢%dn.

Note that Mﬁ equals Mx, which is isomorphic under the stochastic integral to

L(n) - SPigy, konj = (L* - spre kY, SUEPRIS

-7ko

. . . . . o} asulig N
which is in turn isomorphic to L™ - sp {e » k<n} under the correspondence

h-go <~ ch, Thus in order to show that X is regular it is equivalent to show
that L" - 5p ie KV,

n ken; = {0}, which has been done in the third paragraph

of this proof. Thus (1) is shown.
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We finally show that (4) <-~ (5). Assume (4). Put Y = T akv
"kz'l n+tl-k

X - : e i
Mn = Mn’ Then Xn+1 -y aOVn+1 and the orthogonality of the Vk S irply

[Vk, X +]-Y]L = 0 for all k.n, and by linearity and continuity [W, X4 - Y] =0

for all W - M: = Mﬁ, including in particular all Xk's with k < n. It follows

n

that ¥ = Xy .

Conversely assume (5). Put wn+] = X - X

, X v 3 . .
for all W . M =M . Also from X ., =W ..+ ) _aV _ weobtain

n+l.n’ Then [w,wn+]]l =9

X _ Y X _ oV
Mn+? = Mn + sp(wn+]), and from Mn+l = Mn+1 by a standard araument
X WV X . . .
Mn+] = Mn + sp(Vn+]). Hence wn+1 ¢ Mn+1 can be written in the form wn+1_Y+CVn+1
v _ v
where Y . Mn’ and thus wn+1-cvn+] =Y Mn‘ It then follows that
[wn+] - cvn+], wn+1]a =0 and [wn+] - cVn+], Vn+1]a =0
i.e.
, e _ - i Ko
Woag o = ClVpaqs Wy and W 0V g = el gl
Then ¢ # 0. For if c =0 ->W =0 X = i . MX o> MX = MX >
) n+1 n+1 ntl,n " n n+1 n ’
AT TLEN Lv V..] =0V =0 >X_ =01i.e. X is the zero
'n+1 n nt1’ ' n+l-'y n n T
process. Then multiplying the above equalities together we obtain i:
Y - (GO o c s - B
WVoaqs Woag d Dy Vg b, = TV T T T Writing v o= S 2
and wn+] = fgn+]d2, we thus have
! <a-1> . 1’ <a-1> _ ( 47 \f{ X
Frerdner G0 (O faey de = JIfg e - g di

Oropping for simplicity the subscripts, this means that equality holds in

Holder's inequalities /if! lglu-]d“ E,I!fl‘u '59;12']’

1371, so that 1g(e)| = rIf(6)] a.e. [1], for some r0,
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and thus g{«) = re1m(’)f(w) a.e. [..]. Substituting in the above equaticn we

obtain

letoiran? = liritan?

and an elementary argument shows that ejf(”)is a complex constant for a.e.

w.r.t. f *d.. Thus g () a.e. [] for some complex constant

n+1(g) - Zn+1fn+1

Zo41o and wn+] = zn+]vn+]. The joint stationarity of X and V implies
. B . .
(X - Xn+1,n’ Vn+1]L = [wn+], Vi, = Zgsy 1S independent of n. Hence
. - . - \ ' . .
putting z ., = ag we obtain X ., Lk=0akvn+]-k' Thus (4) is established and

tne proof of the theorem is complete.

Proof of Proposition 9. (i) and (ii). Assume (1) of Theorem 1 and consider

two moving average representations as in (4): Xn = 4k=0akvn-h = gk:ob U

K n-k*
Since the metric projection Xn,n-] = )k:]anvn_k = lk:]bkun-k of Xn onto
Y S : . - L
Moo= Mn = Mn is unique we obtain aOVn bOUn By absorbing in Vn’ resp. Un’
the phase of ags resp. bO’ we may assume without loss of generality that
. . o= -~ . | s i Vo= 1

dq» by 0. Since Vo 1 ‘|Un|x, it follows that 3y ’bO‘ and hence

= = ' [ - = 1
35 = by. Thus we have Vi, T U, for all n and hence Te=rlag bn)vk 0 which

implies an=bn by the orthogonality of the Vn s. This shows both (i) and (ii)

(i11). Suppose on the contrary that X, = where the r.v.'s

.
5k=0akvn—k

-vn- are independent. Since Vn . MX, they are of the form Vn = fimfn(

o L'(:), and the mutual independence of the Vn's implies the f _'s have

wutually disjoint supports, say En’ (see Cambanis (1983) for the complex case

considered here). It then follows from X, = frme-1n“d2(ﬁ) that for all n,

~-in:
e =

k%‘Oakfn_k(w) in U'(.).

.........
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Thus for all k > 0 and all n, on Eo_ e = akfn-k(”) a.e. [u], or, equiva-
[ lently,
: C sy ) o
: on each Em. e ajfm( ) a.e. [n], 3 - 0.
L
*' if ali fr = 0 then all V1=O and X 0. Thus for some m, fE :fm’qdp ~ 0. It
! “ m
follows from the displayed equality that then aj # 0, 3 -0, which in turn
1rnlies :E fm ‘d. - 0 for all m. Now fix an arbitrary m, and some © . Em
m . oy
witn an £ neighbournood of positive .. measure. Then fm(~) = e'](m+J)‘/aj for
@i 3 7. irplies ag - e“J'aO for all j 0. But since this should hold for

eacr sucn - on each of the disjoint sets Em, it leads to an obvious contradiction.

Thus (111) is proven.

Proof of Proposition 10. An independent Wold decomposition (WD) is precluded
+77=) ANt o+
n kZO k n'k

aiong with the WD described in Theorem 2. Then Zé is the metric projection of

7°

by Theorem 2. Assume now X has a left WD: Xn =Y o

n

¥ onto ¥ (Cambanis et al. (1985)) hence 27 = 7 _and thus also ¥/ = Y . It
foliows that Mx = Mz = MI‘ = MV‘ and thus V has a Teft WO, since V~ does.
Sirilarly assuming X has a righ WD it follows that so does V. But it has been
sroven in Example 4 of Cambanis et al.(1985), that a harmonizable SuS process
with Lebesgue spectral reuure, such as V of Theorems 1 and 2, has no left nor

right WD. Tnus the proof of the Proposition is complete.
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4. Positive angle and distance between past and future.

In this section we give spectral and analytic criteria for a harmonizable
SaS process X = {Xn} to have positive angle or distance between past and future,
and we discuss its ramifications.

In view of stationarity, the location of the “present" is not important,
and thus the past Px and future FX of X are defined as the closure in probability
of the linear spans of (xn, n < 0} and of {Xn, n > 1} respectively. We say
that past and future of X are at positive angle, or that X has positive anale,
if n(PX,FX) <1 or :(FX,PX) < 1. We also say that past and future are at
positive distance, or that X has positive distance, if d(PX,FX) > 0. Finally
X is called minimal if Xn cannot be perfectly interpolated from {Xk, k#n;, i.e.

if Xn does not belong to the closure in probability of the linear span of

th, k#n .

Tneorem 3. For a harmonizable SaS process X = {Xn} with 1<a<2 and spectral :x

measure 1 the following are equivalent and imply that X is regular and }
minimal. %

(1) X has positive angle: p(PX,FX) <1or p(Fx,PX) < 1.

(2, X has positive distance: d(PX,FX) > 0.

(3) 1+ is a Schauder basis for m

1

(4) d.(5) = f(v)ds, L%(f) < L', and the Fourier series of every g ¢ L"(f)

converges to g in LY(f).

¢ et
T
N
PG I N W

{5) du(c) = f(6)de and the spectral density f satisfies

—

(2,) (7 S0y ¢ T -k

for some constant k and all intervals I with length [I| (which are

allowed to wrap around +7n). -
{

-
..........................................
...........

..........
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{6) Tne conjugation operator, considered cn real trigonometric polynomials,

is bounded in L(y.).

The first three equivalent conditions are time domain conditions, while
the last three are frequency domain conditions. The equivalence of the
spectral conditions (4),(5) and of (6) with . absolutely continuous, is a
well knowr result in Huntet al(1973). Here we provide a simple proof of the
equivalence of the weaker condition (6) (where . is not assumed absolutely
continuous) with (4) via the time domain criterion given in Corollary 2, while
6f course the proof in Hunt et al. (1973) is analytic. Let us recall that
in’

ni:

is defined by Zn#O'i sgn(nja e

In the proof of Theorem 3 use will be made of the following property

the conjugate of a Fourier series PICH

which is valid in general normed linear spaces and says that two subspaces
are at a positive distance if and only if the algebraic projection from

their algebraic sum onto either subspace is a bounded operator.

Proposition 11. If M and N are subspaces of a normed linear space, the

foliowing are equivalent.

VIXPY = 1= LYl XeM, YON? ~ 0.

(i) d(#.N) = inf - iX=Y!

(ii) There is a constant k, such that !'X | < k!'X+Yi! for all X.M, Y(N.

-1

Proof. (ii) clearly implies (i), with the inf - Kk We now show that

AWl

"not (ii)" impiies "not (1)". Assume (ii) is not satisfied. Then there are

A_-M, Y .Nsuch that 0 - nl'X =Y it < " X . It follows that ‘'Y !, ~ 0 for
n n n n' - n n

rno 2, and

Wy v -

Rl 1
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and hence (i) is also not satisfied.

We now obtain the following useful result.

Corollary 2. With X as in Theorem 3 the following are equivalent.

() X has positive distance: d(P*,F*) > o.

(ii) There is a constant k such that

m” m
L ekl < kL epXpld
n=- nn''a ‘peog NN

-

for all O<k’<k, O<m”<m, and complex numbers ¢
— - - - n

(ii1)

There is a constant k such that

-

< k| chnxn

c X |
n n"n'ly

I.
e

He~13

k)
for all k:k‘im‘im.

Proof. The equivalence of (i) and (ii) is an immediate consequence of

Proposition 11, and the equivalence of (ii) and (iii) follows from the

stationarity of X.

Proof of Theorem 3. The equivalence of (1) and (2) is shown in Proposition 3.

The equivalence of (2) and (3) follows from Corollary 2 and the fact that
(iii) in Corollary 2 is a characterization of a two-sided Schauder basis,

cf. Singer (1970).

.........................

.................

..........................
.......

(and we may take k =0 or m =0).
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We next show that (3) implies that X is regular and minira’. An
argument similar to the one below has been used in Miamee and Niemi (1985).

Assume (3). To show that X is minimal: X 55'{Xk, k # n}, it suffices to

show that EB'{Xk, k # n} g MX.  Assume on the contrary that EE'{Xk, k#n:= m¥

for some n, and hence by stationarity for all n, so that n sp {Xk, k#n- = MX.
In fact we will show that " 55'{Xk, k#¢n: = {0}, namely that X is Jo-regu1ar.
Indeed if Y « a 55'{Xk, k#n} then by (3) it can be written uniquely as

y = ?nCnYn’ and since for each n, Y ¢ sp X k#n} we have c, = 0 and thus Y=0.

Hence X 1is Jo—regu1ar, and thus minimal as well as regular, since

cn v < 1 en f 1 = ]
o SP ‘Xk’ kin} < “p SP ka, k#n | {0},

Now we show (3) <-> (4). First assume (3). Then X is regular and

by Theorem 1, we have du(8) = f(¢)do. Since X is also minimal, it follows from

-1/{n-1) 1

Theorem 3.3 in Pourahmadi (1984) that f « L, and thus if g L*(f), by

Holder's inequality,
1 1 ) 1 -1 -1

( aeve T o
J(!g.=)'|'g[f £ _g(}!?q,“‘f)‘ ();f T )y Y e

and hence g - L]. Thus L '(f) - L]. Now by (3), every Y . MX has a unigue

Y X_in MX. Using the linear isomorphism Y='gdZ <— g

i =
representation Y nCn*n

between M and LY(f), it follows that every g « L™(u) has a unique representa-

tion a(-) = ]rcne'1nﬂ in L“(f). But from the above displayed inequality the

convergence is also in L], from which it follows that <, is in fact the n-th
Fourier coefficient of g. Thus the Fourier series of every g . L(f) converges

to g in L'(f), and (4) is shown. Conversely assume (4) is satisfied. Fix

¢ 4% Then v = ’gd? for some g . L'(f), and by (4), () = /ngne']“ in LY(f).

It follows that Y = Enénxn in 1%, e now show this representation of Y is

. -1n

unique. Assume we also have Y = Y ¢ X . Then g() = " c e in LYf).
nonn nn
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Using Lemma 3.1 in Miamee (1985), it follows that this convergence is also in
L} and hence 8, ° én’ the rrthFourier coefficient of g. Thus every Y . MX has
a unique representation Y = Xnénxn’ showing (3).

The equivalence of (4), (5) and (6), with du(8) = f(6)deé added on is
established in Hunt et al.(1973), Theorem 1 . Here we shali show that the
weaker statement in (6) is equivalent to (2). An argument 2s in Helson and

Széqo (1960), pp. 129-130, shows that (6) is equivalent to the boundedness of the

truncation operator T from L“(1) into itself defined by

T( ; cne1n8) - Z Cne1ne’
n=-w n>0
. . . . . -ing . . ..
which, considering the isomorphism e <> Xn’ is equivalent to part (ii)

X FX

of Proposition 11 and hence d(P",F") > 0, i.e. (2) which completes the proof.

Condition (3) is the crucial one. It means that every r.v. Y in tne iinear

space MX of the sequence X = {Xn} can be written uniquely as a converging
series in terms of the r.v.'s Xn: Y = ;nbnxn. Thus every linear estimator
based on an observed part of X can be realized by a unique linear filter acting
on X. In particular, unde: any of the equivalent conditions of Theorem 3,
which are stronger than those in Theorem 1, the moving average representation
of Theorem 1 can be inverted to express the sequence of innovations {Vn} as

a2 convergent series

o

V =53 b X .,
n k=0 k' n-k

—_—
[
~—

and the m-step ahead linear predictor X of Xn+m based on -Xk, k-'n- can

ntm,m

be written in the form

~ B OY(: ,
(e ) Xnam.n =) € X

P R T T e o T P P T T e e e O R I
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]

i.e. it can be realized by the filter —_— {Lm’k}k>0 acting on the observed L
part of X. These series converge with respect to Eﬁe norm };-1}q, or equivalently ]
in LP(:). wWhile condition (A,) guarantees that all functions in L“(f) have 5
convergent Fourier series, and all r.v.'s in MX can be written as convergent 3
series in terms of the r.v.'s Xn, substantially weaker conditions can be found, r
in between those in Theorems 1 and 3, which are sufficient for the innovations ;
to have a convergent series representation (I) in terms of the observed values ]
of the process X itself. However we postpone a discussion on this to the end i
of this section, in order to first explore the relationship between the existence J
of (1) and the existence of auto-regressive representations of the predictors. ;
The metric predictor of a harmonizable symmetric processes has been !
considered in Hosoya (1982) and Cambanis and Soltani (1984) and the one step i
ahead metric predictor in+1,n has been obtained. In terms of our results here, i
the one step ahead metric predictor can be written as 1
fae1,1 = L, Aotk i

‘c?. Theorem 1.{(5)). The problem of obtaining the m-step ahead metric |
predictor xn+m,n in the general case is still open, cf. Cambanis and Soltani 3
(1984) for more details. 1
Now we consider the right angle m-step predictor i;+m’p which is the richt 3

anale projection of Xn+m on Mﬁ: . i
4

S (x, ), B

ntm,n r’n+tmon 1

while this right angle predictor may not exist (Proposition 7(i)), the '
following proposition shows that, when it exists, it is in fact the truncation ]

nf the moyina averace nivep in Thenrem 1, extendinn to this predictor a nice

R IE A S e At e - Ct et RIS I . . . -t ot et e PN N T
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nroperty from the Gaussian case.

Proposition 12. (i) If the m-step right angle predictor X$+m , exists then it is

given by o

r _ ¢
ntm,n _kzmakvn+m—k'

(ii) If the regression E(Xn+mlMﬁ) is l1inear then the right angle predictor

~

r

exists and we have
m+n,n

®

" - iM&y = 7
xn+m,n E(Xn+m‘Mn) kémakvm+n-k'

~

Proof. (i) If the m-step ahead right angle predictor X;+m n exists then it

b4

is in Mﬁ and hence 1in Mx. Now Theorem 3, applied to the innovation process ~vn

shows that wvn' is a Schauder basis for MX. (This is because the density of

Y is simply the Lebesgue measure, which clearly satisfies the (A ) condition
(X
of Tneoren 2). Thus one can write X;+m p 3sa convergent series
k]
r =7 ¢ :
n+tm,n = “k'n+tm-k
k=m

“ow by the definition of right angle projection we have

[xF. v] =[x

n+m,n’

Y]

n+m’
N o X v : ; _ : .z
for every Y 1n M T Mn and in particular for Y = Vk’ with k - nj i.e. we have

~

r‘ = .
[Xn+m,n’vk] h [Xn+m’vk]’ k- n.

This snows that

a. = Ci’ for all i - m.

which completes the proof of (i). The proof of (ii) is now irmediate froi

part (ii) of Proposition 7.

..........
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The last proposition shows that when the right angle predictor exists
it can be obtained through a filter exactly similar to the standard one in

the Gaussian case. This can be used to show that the problem of inverting

the moving average representation

X =)
N k30

3 VoK

to obtain a moving average representation for the innovations

o

(1) vV = z b, X
LU k"n-k

is equivalent to  the existence of a series representation of the one step

ahead metric predictorsxn 1.1 in terms of the observed values of X itself

9

+

(e 9]
~

(R) o411 =kzodkxn—k’

and this is equivalent to the series representation of all the existing right

angle predictors X;+m n’ in terms of the observed values of X itself
A r (l‘x
(AP;) n+m,n _kéoek,mxn-k'

The equivaience of (I) and (ﬁ) can be established in the time domain. Indeed

assume that (I) holds. The orthogonality of Vn's implies that for every Y in
X

v - . .

Mn = Mn we have [Y’Vn+1ja = 0.Using (4) of Theorem 1, we obtain
ey Vnendy = L2 Bkney o Vnand = Boltney Vo1,

= ol 2 1ok Jo = PodolVnerVnar Iy

-1 _ ) L
0= 3 >0. Now it follows from boX .o =V .3 - 'p=1B X0y

and thus b

-1 > oo N . .
that xn+],n = -b, 2k=lbkxn+1-k = Zkzo(-bk+]/bo)xn_k and thus (P]) is satisfied.
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Conversely, assume (Rp js satisfied. From (3) and (4) of Theorem 1, we have

o1 ™ Xner,n = 30V ner
and thus by (P]), 3 )
Vn+1 - a6](xn+1 -kgodl,kxn-k) =k;0bkxn+l—k’
with by = aé] and b, = 'dk-]/dO’ k > 1. So (I) holds. The equivalence of

(I) and (APm) follows from an appropriate adjustment in the proof the

corresponding fact for the second order case, as given in Bloomfield (1924),

together with the representation of i;+m,n given in part (i) of Proposition 12.
Considering the isomorphism between the time domain and spectral

domain we see that a necessary and sufficient condition for (I) to hold is

1

that ¢~ ' has a series expansion

(F) OGRS e

converging in L™*(f).

While condition (F) is necessary and sufficient for the convergent
series representations (I) and (Pp of interest to us here, it is not easily
checked (and no easily checked necessary and sufficient condition is available

even when «=2). Following are some sufficient conditions which are easier to

check. The simplest is the one suggested by Masani (1960):

(M) foL” and £ oLl "

A different condition is given in Theorem 3: (A ). The fact that (A )
implies the convergent series representation (H) has also been shown in id
Pourahmadi (1985). A weaker condition, generalizing both conditions (Au) E}

and (M), can be proved similarly to Theorem 4 in Bloomfield (1984), where the 3




L T

case n = 2 is considered:
(B) f = hg where h satisfies (Aq) and g > 0 satisfies (M).

The following are yet weaker conditicns.

Proposition 13. Let X be regular harmonizable SaS with 1 < a < 2, and let »

pe the outer factor of f (cf. Theorem 1.(3)). Then any of the following

conditions implies (F).

(a) f = hygq + h,ya, where hi’gi > 0, h, satisfies condition (Aa), and 9 satisfies

cerndition (M), 1 = 1,2.

‘ . -1 1 e o
\b) qlh} - q2h2 where h1»91 0, g] L, 92 L, L (h]) =L (hz) and

h] satisfies (A )

Proof. (a)Clearly f  h.q., for i = 1,2, so £ i,(h191)~]’ and hence

]l . hj -
: hi - f .(J‘. .
Trus :'] L!<hi). Now since hi satisfies (AL) by Theorem 3 we see that (c'])N, the

“-th Fourier partial sum of :—7.converges to ;'] in L“(hj) and hence in L“(higi)

(cecause g, - L), i.e.

A#cding these two together we get

OV -l o,

i
/

wnicn completes the proof of (a). (b) can be proved by adjusting the proof in

Sloorfield (1985).

.....................
---------------
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As an application of Proposition 13 one can verify that a second order

stationary stochastic process with spectral density

Flo) = |1+ e181:5 4 |7 4 1905

has the representations (I), (P) and (Qm). We know that |1 + e18[p satisfies

(Az) for -1 < p < 1, by Helson and Szegé (1960), and (M) for 0 < p < 1. Thus

. A
we can, for example, take 9y = 1+ e’olo'6, 9o = 11+ e’e!"s,
. i6,0.9
hy =il +e | and h, = 1.
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